Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Mem. Inst. Oswaldo Cruz ; 111(5): 335-346, May 2016. tab, graf
Article in English | LILACS | ID: lil-782048

ABSTRACT

Salivary gland polytene chromosomes of 4th instar Anopheles darlingi Root were examined from multiple locations in the Brazilian Amazon. Minor modifications were made to existing polytene photomaps. These included changes to the breakpoint positions of several previously described paracentric inversions and descriptions of four new paracentric inversions, two on the right arm of chromosome 3 and two on the left arm of chromosome 3 that were found in multiple locations. A total of 18 inversions on the X (n = 1) chromosome, chromosome 2 (n = 7) and 3 (n = 11) were scored for 83 individuals from Manaus, Macapá and Porto Velho municipalities. The frequency of 2Ra inversion karyotypes in Manaus shows significant deficiency of heterozygotes (p < 0.0009). No significant linkage disequilibrium was found between inversions on chromosome 2 and 3. We hypothesize that at least two sympatric subpopulations exist within the An. darlingi population at Manaus based on inversion frequencies.


Subject(s)
Animals , Anopheles/genetics , Chromosome Inversion/genetics , Insect Vectors/genetics , Polytene Chromosomes/genetics , Salivary Glands , Anopheles/classification , Brazil , Chromosome Mapping , Insect Vectors/classification
2.
Mem. Inst. Oswaldo Cruz ; 110(1): 23-47, 03/02/2015. graf
Article in English | LILACS | ID: lil-741609

ABSTRACT

In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.


Subject(s)
Adult , Female , Humans , Male , Middle Aged , Amoxicillin/administration & dosage , Anti-Bacterial Agents/administration & dosage , Drugs, Chinese Herbal/administration & dosage , Helicobacter Infections/drug therapy , Helicobacter pylori/drug effects , Omeprazole/analogs & derivatives , Peptic Ulcer/drug therapy , Anti-Ulcer Agents/administration & dosage , Clarithromycin/administration & dosage , Double-Blind Method , Drug Therapy, Combination , Follow-Up Studies , Helicobacter Infections/pathology , Lansoprazole , Omeprazole/administration & dosage , Prospective Studies , Peptic Ulcer/microbiology , Peptic Ulcer/pathology , Recurrence , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL